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Abstract
An important problem that hinders the use of supervised classification algorithms for brain imaging is that the number
of variables per single subject far exceeds the number of training subjects available. Deriving multivariate measures of
variable importance becomes a challenge in such scenarios. This paper proposes a new measure of variable importance
termed sign-consistency bagging (SCB). The SCB captures variable importance by analyzing the sign consistency of the
corresponding weights in an ensemble of linear support vector machine (SVM) classifiers. Further, the SCB variable
importances are enhanced by means of transductive conformal analysis. This extra step is important when the data can
be assumed to be heterogeneous. Finally, the proposal of these SCB variable importance measures is completed with the
derivation of a parametric hypothesis test of variable importance. The new importance measures were compared with a
t-test based univariate and an SVM-based multivariate variable importances using anatomical and functional magnetic
resonance imaging data. The obtained results demonstrated that the new SCB based importance measures were superior to
the compared methods in terms of reproducibility and classification accuracy.
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Introduction

Machine Learning (ML) is a powerful tool to characterize
disease related alterations in brain structure and function.

Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a Group/
Institutional Author.

Data used in preparation of this article were obtained from the
Alzheimers Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI
contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at:
http://adni.loni.usc.edu/wp-content/uploads/how to apply/ADNI
Acknowledgement List.pdf
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Given a training set of brain images and the associated
class information, here a diagnosis of the subject, supervised
ML algorithms learn a voxel-wise model that captures
the class information from the brain images. This has
direct applications to the design of imaging biomarkers,
and the inferred models can additionally be considered
as multivariate, discriminative representations of the effect
of the disease to brain images. This representation is
fundamentally different from conventional brain maps that
are constructed based on a voxel-by-voxel comparison of
two groups of subjects (patients and controls) and the
patterns of important voxels in these two types of analyses
provide complementary information (Kerr et al. 2014;
Haufe et al. 2014; Tohka et al. 2016).

A key problem in using voxel-based supervised classi-
fication algorithms for brain imaging applications is that
the dimensionality of data (the number of voxels in the
images of a single subject, i.e., the number of variables1)
far exceeds the number of training subjects available. This

1In most scenarios relevant to this work, a single variable corresponds
to a single voxel, but this does not have to be the case. We opt to use
the general term variable here.
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has led to a number of works studying variable selection
within brain imaging; see Mwangi et al. (2014) for a review.
However, in addition to selecting a set of relevant vari-
ables, it is interesting to rank and study their importance to
the classification. This problem, termed variable importance
determination, has received significantly less attention and
is the topic of this paper.

The simplest approach to assess the importance of
a variable is to measure its correlation with the class
labels, for example, via a t-test. This is exactly what
massively univariate analysis does. However, it considers
variables independently of others and, therefore, may miss
interactions between variables. Indeed, a variable can be
meaningful for the classification despite not presenting
any linear relationship with the class label (Haufe et al.
2014). Further, there is evidence that this importance
measure does not perform well for variable selection in
discrimination tasks (Chu et al. 2012; Tohka et al. 2016)
and, therefore, multivariate importance measures might be
more appropriate.

The use of ML opens a door for more sophisticated
methods to assess the importance of variables, able
to capture some of the interactions among variables.
A straightforward approach is to base each variable
importance on the difference between the performances
observed in an ML method when the variable is present and
when it is absent from the training instances. A significant
decrease in performance after removing a variable indicates
its relevance. While this methodology is straight-forward,
it is not suitable for brain imaging applications as it would
fail to recognize the relevance of important but mutually
redundant variables. A few ML methods favor a richer and
more detailed analysis as they enable to assess the role that
each individual variable plays in the composition of the
architecture of the model. Two clear examples of this class
are linear models and Random Forests2 (RFs).

If the variables have been properly standardized, the
weights of a linear classifier can be considered as measures
of variable importance (Caragea et al. 2001) (see, e.g, Cohen
et al. 2010; Khundrakpam et al. 2015 for neuroimaging
examples). However, when the variables are redundant as
often in neuroimaging, the weights may change erratically
in response to small changes in the model or the data. This
problem is known as multicollinearity in statistics. Linear
regressors can be endowed with Lasso and Elastic Net
regularizations (Friedman et al. 2008; Zou and Hastie 2005),
in order to deal with problems with a high number of input

2We refer to those RFs in which each tree split is defined in terms of a
single variable.

variables. These regularizations force sparsity and remove
variables of reduced relevance from the linear model,
enhancing the contribution of the remaining variables. More
elaborated methods take a further step in the exploitation
of the relationship between the weight of each variable
in a linear classifier/regressors and its relevance (Guyon
et al. 2002). The starplots method of Bi et al. (2003)
learns an ensemble of linear Support Vector Regressors
(SVR) endowed with a Lasso type regularization in the
primal space. The regularization filters out the non-relevant
variables from each regressor, while the starplots determine
the relevance of the non-filtered variables by looking for
smooth and consistent patterns in the weights they achieve
across all the regressors in the ensemble. These linear
methods with Lasso regularization present two significant
drawbacks in very high dimensional scenarios. First, the
computational burden of the resulting optimization in the
primal space is high. Second, they enforce an aggressive
sparsity, usually reducing the number of non-filtered
variables to a final quantity comparable to the number of
training instances. This last feature is specially harmful in
neuroimaging problems, where the typical situation is that
a disease affects a set of focal brain areas. This reflects in
groups of clustered variables being important with a strong
correlation. A Lasso regularization would filter out most of
the important (but correlated) variables, what complicates
the interpretation of the discrimination pattern. To combat
this problem, for example, Grosenick et al. (2013) and
Michel et al. (2011) have introduced brain imaging specific
regularizers which take into the account the spatial structure
of the data. The application of these methods is complicated
by a challenging parameter selection (Tohka et al. 2016) and
deriving a variable-wise importance measure is complicated
by the joint regularization of weights of the different
variables.

Also RFs (Breiman 2001) facilitate the assessment of
variable importance. RFs are ensembles of decision trees
where each tree is trained with a subset of the available
training subjects, and with a subset of the available
variables. RFs offer two main avenues for assessing the
variable importance: Gini importance and permutation
importance based on the analysis of out-of-bag samples
(Archer and Kimes 2008). Both measures have found
applications in brain imaging: Langs et al. (2011) studied
voxel selection based on Gini importance, Moradi et al.
(2015) ranked the different types of variables (imaging,
psychological test scores) for MCI-to-AD conversion
prediction based on the out-of-bag variable importance and
Greenstein et al. (2012) ranked the importance of cortical
ROI volumes to schizophrenia classification. However,
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these applications have considered at most tens of variables
while our focus is on a voxel-wise analyses of whole brain
scans, where we have tens of thousands of variables. Indeed,
the usability of RFs to capture variable importance in a
multivariate fashion is questionable in high dimensional
scenarios. This is partially due to the use of decision trees
as base classifiers. Each decision tree in an RF comes out
of a training set that includes a sample of the observations
and of the variables. In a data set in which the number of
variables is far larger than the number of observations each
tree definition will rely on a very reduced set of variables
(notice that a set of 100 samples is split completely by a
tree with 100 nodes, each implementing a threshold test
in one of the variables). This means that in order to get a
chance to assess the importance of all the variables (namely,
that each variable shows a large enough number of times
across the trees in the ensemble), the forest must contain
an extraordinarily large number of trees, and this makes
the method computationally less attractive than the use of
an ensemble of linear classifiers. In an ensemble of linear
classifiers every variable can get a weight in every classifier,
while in a random forest typically only a reduced fraction
of variables will be used as splits in every tree. In addition,
the weight of a variable in a linear classifier results from
a global optimization process that takes into account the
joint contributions of all variables simultaneously, while the
usage of a variable in a split within a decision tree is strongly
dependent of the particular subset of splits that lead to the
branch in which this split is used (Strobl et al. 2008). Note
that this criticism pertains only to the variable importance
scores from RFs, and not to the accuracy of predictions
derived from RFs.

To overcome the limitations of the regularized linear
models and RFs, we introduce and study a new variable
importance measure based on the sign consistency of the
weights in an ensemble of linear Support Vector Machines
(SVMs). Briefly, we train an ensemble of SVMs using
only a part of the subjects available for each SVM in the
ensemble. The main idea is to define the importance of
a variable using its sign consistency, i.e., the fraction of
members of the ensemble in which its weight is positive
(or negative). We thereafter prune the variable importances
using the ideas from transductive conformal analysis.
We derive a paramatric hypothesis test of the variable
importance measures and show that the new importance
measures are an improvement over p-value estimation for
SVM weights of Gaonkar and Davatzikos (2013) and
Gaonkar et al. (2015).

The results presented in this paper build on our previous
work on variable selection (Parrado-Hernández et al. 2014)
and thoroughly extend a preliminary conference paper

focused on assessing variable relevance (Gomez-Verdejo
et al. 2016). In particular, the main novel contributions
of this paper over (Parrado-Hernández et al. 2014) and
Gomez-Verdejo et al. (2016) are:

– We explain the variable importance measure and its
properties in more detail than before and provide
algorithms for its computation.

– We derive a parametric hypothesis test for variable
importance. The variable selection is carried out with
a hypothesis test that replaces the cross validation of
the previous works. The hypothesis test improves the
stability and reduces the processing time by an order of
magnitude.

– We perform new large-scale experiments to assess the
accuracy and stability of our novel importance measure
in comparison to related approaches (Gaonkar and
Davatzikos 2013; Gaonkar et al. 2015) and show that
this new measure is an improvement over them.

Methods

Variable Importance with Ensembles of Linear SVMs

We start by introducing the basic variable importance
computation, termed Sign Consistency Bagging (SCB).
Thereafter, in the next subsection, we enhance the basic
algorithm by introducing a conformal variant (SCBconf) of
the basic algorithm that outperforms the basic algorithm for
certain problems.

Consider a binary classification task to differentiate
between two groups of subjects. We refer to these two
groups as patients and controls. The training data is formed
by N pairs (xi , yi), i = 1, . . . , N where xi = [xi

1, . . . , x
i
P ]T

is a vector with the variables corresponding to the brain scan
of the i-th subject and yi = 1 if the i-th subject is a patient
and yi = −1 otherwise. We assume xi

j ≥ 0. This is often
a natural requirement and, in any case, it can be fulfilled by
adding a suitable constant to all xi

j .
We use linear SVM classifiers as base learners. The

predicted label ŷ for a test sample x is given by

ŷ = sign(w0 + wT x) .= g(x)

and the classifier is defined in terms of its parameters w0

(bias) and w = [w1, . . . , wP ]T (weight vector).
We train S linear SVMs, each with a different subset

of γN training instances selected at random without
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replacement; γ ∈ [0, 1] is the subsampling rate, usually
selected as γ = 0.5. The s-th SVM is therefore described
by the bias term ws

0 and the weight vector ws =
[ws

1, w
s
2, . . . , w

s
P ]. Once the learning of the ensemble is

finished, each variable in the input data xj is related with a
set of S weights w1

j , . . . , w
S
j . Since xi

j ≥ 0 for all i, j , there
is a straightforward qualitative interpretation of the sign
consistency across all the ws

j in the set. If ws
j ≥ 0 for all s,

we have that the j -th variable pushes the classifier towards
the positive class while a result of ws

j < 0 for all s means
that j -th variable pushes the classifier towards the negative
class. Since the linear SVM uses a L2 norm regularization
that does not enforce sparsity in the primal space it is very
unlikely that ws

j = 0, for all j, s. It is rare that all ws
j would

share the same sign and we introduce an importance scoring
Ij , j = 1, . . . , P , quantifying the sign consistency:

Ij = 2 max(p̂j , 1 − p̂j ) − 1 = 2|p̂j − 0.5| (1)

with

p̂j = 1

S

S∑

s=1

I(ws
j > 0), (2)

where I(x) is the indicator function, I(x) = 1 if x is true
and I(x) = 0 otherwise. If all weights corresponding to
a same variable ws

j , s = 1, . . . , S receive the same sign,
variable j would get an importance scoring Ij = 1, meaning
it is very relevant for the classification. As the proportion
of ws

j with opposite sign gets balanced, the interpretation
of the variable j for the classification gets blurred, since in
some members of the ensemble a high value of xj would
indicate member of one of the classes while in some other
members it would indicate membership of the other class.
In this case, as the interpretation varies depending on the
sub-sample, the variable is not useful (or is even harmful)
for the generalization performance and should have a low
importance score.

Transductive Refinement of Variable Importance

In this sub-section, we introduce a variant of SCB variable
importance, SCBconf. This algorithm builds on the results
of SCB and enhances the identification of the relevant
variables by borrowing ideas from transductive learning and
conformal analysis.

Transduction refers to learning scenarios in which one
has access to the observations, but not the labels, of the test
set3. Conformal analysis goes a step further and proposes to
learn a set of models, one per each training set that arises
from adding the test instance with each possible label (in
binary classification one would learn two models). Then, the
test instance is classified with the label that led to the model
that better conformed to the data.

Conformal analysis is used to enhance variable impor-
tance scores as follows: Let ur

1, . . . ,u
r
M be a subset of M

testing data selected randomly in the r-th conformal iter-
ation with r = 1, . . . , R. Now, M independent labellings
ar

1, . . . , a
r
M are generated at random. Label ar

i is the one
generated for sample ur

i in the r-th iteration. The correct
labels of these test samples are never used along this pro-
cedure because they are not accessible. For each of these
iterations, we compute the importance measures Ij (r), j =
1, . . . , P , based on the training data x1, . . . , xN , the test
samples u1, . . . ,uM and the labels y1, . . . , yN , ar

1, . . . , a
r
M .

After running R iterations, we set

I conf
j = min

r
Ij (r). (3)

For a variable to be important, I conf
j requires that it is

important in all of the R labellings. The underlying intuition
is that the importance of variables that yield a high Ij (r) in
a few the subsets, but not in all of them, strongly depends
on particular labellings. Therefore these variables should
not be selected as their importances are not aligned with
the labeling that leads to the disease discrimination, but
labellings that stress other partitions not relevant for the
characterization of the disease.

Hypothesis Test for Selecting Important Variables

The previous subsections have introduced two scorings, Ij

and I conf
j , able to assess the relevance of the variables.

This subsection presents a hypothesis test to fix qualitative
thresholds so that variables with scorings above the
threshold can be considered as relevant for the classification
and variables with scorings below the threshold can be

3Transductive algorithms can be contrasted with inductive ones,
for example, the k-nearest neighbor algorithms are transductive
algorithms (Gammerman et al. 1998). Because the label information
of the test data is not used in the learning process, transduction does
not lead to upward biased classifier performance estimates.
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safely discarded since their importance is reduced. We first
present the test for importances Ij and thereafter generalize

this test for I
conf
j . We adopt a probabilistic framework

in which the sign of the weight of variable j in the
SVM of bagging iteration s, sign(ws

j ), follows a Bernoulli
distribution with the unknown parameter pj ∈ (0, 1);
this indicates that wj > 0 with probability pj . In this
framework, an irrelevant variable j is expected to yield
positive and negative values in wj with the same probability,
thus one would declare variable j as irrelevant if pj = 0.5
with high probability. We formulate this scenario via the
following hypothesis test:

{
H0 : pj = 0.5, j is not relevant
H1 : pj �= 0.5, j is relevant,

(4)

which we use to detect relevant variables by rejecting the
null hypothesis. We solve the test (4) with a statistic zj :

zj = p̂j − 0.5
√
Var

{
p̂j

} . (5)

where estimate p̂j of pj is computed as the sample mean
of the observed signs of ws

j : p̂j = 1
S

∑S
s=1 I(ws

j > 0).
The parameter p̂j can be considered to follow a binomial
distribution rescaled by the factor S and, thus, its variance

can be estimated as
1

S
p̂j (1 − p̂j ) from the observations.

As the observations come from a bagging process, they are
correlated and independence cannot be assumed. Therefore,
we resource to the following estimator of Var

{
p̂j

}
(Nadeau

and Bengio 2003):

Var
{
p̂j

}

S
=

(
1

S
+ ρ

1 − ρ

)
σ̂ 2

j , ρ < 1

where ρ represents the correlation among samples and σ̂ 2
j

denotes to the estimator variance if independence could
be assumed. Moreover, according to Nadeau and Bengio
(2003), since the bagging corresponds to a scenario in
which, at each iteration, n1 samples are used for training the
SVM and n2 = N − n1 are left out, ρ can be estimated as
n1/(n1+n2). Since the proposed bagging scheme uses n1 =

γN training samples in each iteration, we can approximate
ρ with γ and, noticing also that S � 1, we get that

Var
{
p̂j

} = S

(
1

S
+ γ

1 − γ

)
σ̂ 2

j � S
γ

1 − γ
σ̂ 2

j .

With these approximations, the statistic zj of Eq. 5 becomes

zj = p̂j − 0.5
√

γ
1−γ

p̂j (1 − p̂j )
. (6)

The statistic zj of Eq. 6 follows a t-student distribution with
S −1 degrees of freedom (Nadeau and Bengio 2003). When
S is large enough, as in our case, one can safely approximate
the distribution by the standard Gaussian distribution with
zero mean and unit variance.

We now generalize the hypothesis test to the importances
I

conf
j of “Transductive Refinement of Variable Impor-

tance”. The selection of I conf
j as the minimum of the R

scorings Ij (r) is equivalent to select as p̂conf
j the p̂j,r that

lies closest to 0.5. The zconf
j can be then computed using

Eq. 6 and substituting p̂j by p̂conf
j . An equivalent definition

would be to select zj with the smallest absolute value among
the R candidates.

Implementation

Algorithm 1 Sign consistency bagging.

Input: : matrix with training brain scans (each

row is a subject, each column a variable ); y: vector with the

labels corresponding to the rows of

Output: : 1 vector with voxel relevances; z: 1

vector with significance statistic

1: p 0 0 vector with zeros

2: for 1 to do

3: y randomly sample training samples

4: w LinearSVM y

5: for 1 to do

6: if 0 then

7: 1

8:

9: z

10: for 1 to do

11:

12: 2max 1 1

13: Compute score using Eq. 6
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Algorithm 2 Sign consistency bagging with transductive

refinement.

Input: : matrix with training brain scans (each

row is a subject, each column a variable ); y: vector with the

labels corresponding to the rows of ; : matrix

with testing brain scans

Output: Iconf: 1 vector with variable relevances; z: 1

vector with significance statistic

1: empty matrix

2: for 1 to do

3: randomly sample testing observations

from matrix

4: randomly generate a label per each u ,

1

5: p 0 0 vector with zeros

6: for 1 to do

7: randomly sample training data

8:

9:

10: w LinearSVM

11: for 1 to do

12: if 0 then

13: 1

14: for 1 to do

15:

16:

17: Iconf empty vector with elements

18: for 1 to do

19: conf min

20: argmin

21: conf

22: Compute score using Eq. 6 and conf

Algorithms 1 and 2 sketch the implementation of the
method to assess variable importance and its version
with transductive refinement. In both cases, the ensemble
contains a total of S = 10.000 SVMs and each SVM is
trained with half of the available training data (γ = 0.5).
The SVM regularization parameter C was fixed to 100
as it was observed to be large enough to solve properly
these linearly separable problems. A supplement further
demonstrates the use of the SCB method with a small toy
example.

If any of the training sets presents unbalanced class
proportions, the subsampling process at each bagging
iteration is used to correct for it. If the transductive
refinement is applied, the number of conformal iterations
is set to R = 20. For each of these iterations, the

number of selected test data, M , has been fixed in such a
way that no more than two test data samples is used per
each 100 training samples. The hypothesis test described
in “Hypothesis Test for Selecting Important Variables” to
identify the subset of important variables is applied with a
significance level of α = 0.05.

Finally, the overall goodness of the proposed variable
importance measure is evaluated by checking the discrim-
inative capabilities of a linear SVM trained using only the
important variables. This SVM is also trained with C =
100, since in most cases there are still more variables than
samples. However, unlike in the bagging iterations, in this
final classifier the class imbalance is solved by using a re-
weighting the regularization parameter of the samples of
the minority class in the training of the SVM. This way
the contribution of the samples of both minority and major-
ity class to the SVM loss function is equalized. This is a
standard procedure within SVMs, contained in most SVM
implementations (Chang and Lin 2011).

The software implementation of all the methods has
been developed in Python4. The SVM training relies on the
Scikit-learn package (Pedregosa et al. 2011) which is based
on the LIBSVM (Chang and Lin 2011).

Materials

Simulated Data

We generated 10 simulated data sets to evaluate the methods
against the known ground-truth and to demonstrate their
characteristics with a relatively simple classification task.
The datasets contained simulated images of 100 controls
and 100 patients and the images had 29852 voxels, similarly
to ADNI magnetic resonance imaging (MRI) data in the
next subsection.

The simulations were based on the AAL atlas (Tzourio-
Mazoyer et al. 2002), downsampled to 4mm3 voxel-size.
We selected six regions as important modeling dementia
related changes in structural MRI. The voxels of these
regions are given in sets Q1, . . . , Q6 which are left and
right Hippocampus (Q1, Q2), Thalamus (Q3, Q4), and
Superior Frontal Gyrus (Q5, Q6). We generated the brain
scan corresponding to the each subject in a way that each
relevant region (Q1, . . . , Q6) presents correlated voxels
(within a class), to make the task of finding them difficult
for multivariate variable selection/importance methods. For

4See a Python notebook for examples https://github.com/vgverdejo/
ResearchActivities/blob/master/Neuroimage/Sign-consistency.ipynb
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every subject i, i = 1, . . . , N , we draw a subject bias bi

from a Gaussian distribution with zero mean and variance
0.01. Define Q as the union of the six relevant regions Qk .
If i models a patient, its voxel values are generated with the
rule:

xij =

⎧
⎪⎨

⎪⎩

1

|Qk|
∑

j∈Qk

(1 + bi + eij ) + vij , if j ∈ Q

eij , otherwise

If i models a control subject, its voxel values are generated
with:

xij =

⎧
⎪⎨

⎪⎩

1

|Qk|
∑

j∈Qk

(bi + eij ) + vij , if j ∈ Q

eij , otherwise

In all cases eij and vij were drawn from zero-mean Gaussian
distributions with variances 1 and 0.01, respectively.
Thereafter, to the relevant voxels, we added white noise with
the variance

√
2 projected to the Bayes-optimal decision

hyperplane. This operation maintains the Bayes error rate,
but it makes the task of finding important voxels more
difficult. Finally, we filtered the images with an isotropic
4-mm FWHM Gaussian kernel to model the smoothness
in brain images. The Bayes error for this data was 2.2 %.
To evaluate the classification accuracy of the methods, we
simulated a large test set with the same parameters as the
training set.

ADNI Data

A part of the data used in the preparation of this article
were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). For up-to-
date information, see www.adni-info.org.

We studied the classification between MCI (Mild
Cognitive Impairment) and healthy subjects (NCs) using
structural MRIs from ADNI. This problem is more
challenging than NC vs. Alzheimer’s Disease (AD)
classification (Tohka et al. 2016) and therefore offers better
insight into the capabilities of different variable importance
methods. We did not consider stable vs. progressive MCI
classification as the number of MCI subjects is not large
enough for the reproducibility analysis performed with this
data (see Tohka et al. 2016 for a more detailed discussion).

We used MRIs from 404 MCI subjects and 231 NCs (T1-
weighted MP-RAGE sequence at 1.5 Tesla, typically 256
x 256 x 170 voxels with the voxel size of 1 mm x 1 mm
x 1.2 mm). The MRIs were preprocessed into gray matter
tissue images in the stereotactic space, as described in Gaser
et al. (2013) and Moradi et al. (2015), and thereafter they

were smoothed with the 8-mm FWHM Gaussian kernel,
resampled to 4 mm spatial resolution and masked into 29852
voxels. We age-corrected the data by regressing out the
age of the subject on a voxel-by-voxel basis (Moradi et al.
2015). This has been observed to improve the classification
accuracy in dementia related tasks (Tohka et al. 2016;
Dukart et al. 2011) due to overlapping effects of normal
aging and dementia on the brain.

With these data, we studied the reproducibility of the
variable importance using split-half resampling (aka 2-fold
cross-validation) akin to the analysis in Tohka et al. (2016).
We sampled without replacement 100 subjects from each
of the two classes, NC and MCI, so that N = 200. This
procedure was repeated L = 100 times. We denote the two
subject samples (split halves train and test) by Al and Bl

for the iteration l = 1, . . . , L. The sampling was without
replacement so that the split-half sets Al and Bl were always
disjoint and therefore can be considered as independent train
and test sets. The algorithms were trained on the split Al

and tested on the split Bl and, vice versa, trained on Bl

and tested on Al . All the training operations, including the
estimation of regression coefficients for age removal, were
done in the training half. The test half was used only for
the evaluation of the algorithms. We used 2-fold CV instead
of more typical 5 or 10-fold CV as we needed to ensure
that the training sets between different folds are independent
in order not to overestimate the reproducibility of variable
importance scores.

COBRE Data

To demonstrate the applicability of the method for the
resting state fMRI analysis, we used the pre-processed
version5 of the COBRE sample (Bellec et al. 2015). The
dataset, which is a derivative of the COBRE sample found in
International Neuroimaging Data-sharing Initiative (INDI)6

includes preprocessed resting-state fMRI for 72 patients
diagnosed with schizophrenia (58 males, age range = 18-65
yrs) and 74 healthy controls (51 males, age range = 18-65
yrs). The fMRI dataset features 150 EPI blood-oxygenation
level dependent (BOLD) volumes (TR = 2 s, TE = 29 ms,
FA = 75 degrees, 32 slices, voxel size = 3x3x4 mm3 , matrix
size = 64x64) for each subject.

We processed the data to display voxel-wise estimates of
the long range functional connectivity (Guo et al. 2015). It
is well documented that a disruption of intrinsic functional

5Available at https://figshare.com/articles/COBRE preprocessed
with NIAK 0 12 4/1160600
6http://fcon 1000.projects.nitrc.org/indi/retro/cobre.html
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connectivity is common in schizophrenia patients, and this
disruption depends on connection distance (Wang et al.
2014; Guo et al. 2015). First, the fMRIs were preprocessed
using the NeuroImaging Analysis Kit (NIAK7) version
0.12.14 as described at 4. The preprocessing included slice
timing correction and motion correction using a rigid-body
transform. Thereafter, the median volume of fMRI of each
subject was coregistered with the T1-weighted scan of the
subject using the Minctracc tool (Collins and Evans 1997).
The T1-weighted scan was itself non-linearly transformed
to the Montreal Neurological Institute (MNI) template
(symmetric ICBM152 template with 40 iterations of non-
linear coregistration Fonov et al. 2011). The rigid-body
transform, fMRI-to-T1 transform and T1-to-stereotaxic
transform were all combined, and the functional volumes
were resampled in the MNI space at a 3 mm isotropic
resolution. The ”scrubbing” method (Power et al. 2012)
was used to remove the volumes with excessive motion
(frame displacement greater than 0.5 mm). A minimum
number of 60 unscrubbed volumes per run, corresponding
to 180 s of acquisition, was required for further analysis. For
this reason, 16 controls and 29 schizophrenia patients were
rejected from the subsequent analyses, yielding 43 patients
and 58 healthy controls to be used in the experiment. The
following nuisance parameters were regressed out from the
time series at each voxel: slow time drifts (basis of discrete
cosines with a 0.01 Hz high-pass cut-off), average signals
in conservative masks of the white matter, and the lateral
ventricles as well as the first principal components of the six
rigid-body motion parameters and their squares (Giove et al.
2009). Finally, the fMRI volumes were spatially smoothed
with a 6 mm isotropic Gaussian blurring kernel and the gray
matter (GM) voxels were extracted based on a probabilistic
atlas (0.5 was used as the GM probability threshold).

Following this preprocessing, we computed the correla-
tions between the time series of GM voxels which were at
least 75 mm apart from each other. We use N75

j to denote
the set of voxels at least 75 mm apart from the voxel j and
z(r)jj ′ to denote the Fisher transformed correlation coef-
ficient between the voxels j and j ′. Then, two features
x−
j , x+

j are defined per voxel:

x−
j =

∑

j ′∈N75
j

z(r)
jj ′ <0

−z(r)jj ′ ; x+
j =

∑

j ′∈N75
j ;z(r)jj ′>0

z(r)jj ′ .

(7)

The long-range connection threshold of 75 mm is rather
arbitrary, but it has been previously used to define short and
long range connections (e.g., by Guo et al. 2015; Wang et al.
2014). We separated the positive and negative connections

7https://github.com/SIMEXP/niak

as Guo et al. (2015). This preprocessing yielded altogether
81404 variables, corresponding to two times 40702 GM
voxels.

ComparedMethods

SVMwith Permutation Test

The closest approach to SCBs is training a linear SVM
and studying the importance of the weights of the primal
variables in the SVM by means of a permutation test
(Mouro-Miranda et al. 2005; Wang et al. 2007). Here,
we use two analytic implementations of this approach.
The first one involves a null hypothesis test on a statistic
over the j-th SVM primal weight (Gaonkar and Davatzikos
2013),wj . The second one involves a test on its contribution
to the SVM margin (Gaonkar et al. 2015). As the number
of primal variables (voxels) greatly exceeds the number
of dual variables (subjects), we can consider that all the
training samples would eventually become support vectors.
Therefore, we approximate the SVM primal weight vector
by the LS-SVM as Suykens and Vandewalle (1999):

w = By = XT

[
X̂−1 + X̂−1J

(
−J T X̂−1J

)−1
J T X̂−1

]
y,

(8)

where X is the N × P (number of subjects × number
of variables) training data matrix, X̂ = XXT , y =
[y1, . . . , yN ]T is the associated class label vector, and J

is a vector of ones. Considering that the permutation test
randomly generates different label values with probabilities
P {yi = 1} = p1, P {yi = −1} = 1 − p1 where p1 is the
percentage of patient data, we can define the expected value
and variance of the labels during permutations as: E {yi} =
2p1 − 1, Var {yi} = 4p1 − 4p2

1. Now, using Eq. 8, we
define the distribution of the null hypothesis under the first
statistic (denoted as SVM+perm) as a Gaussian distribution
with mean and variance given by:

E
{
wj

} = (2p1 − 1)

N∑

i=1

Bij (9)

Var
{
wj

} =
(

4p1 − 4p2
1

) N∑

i=1

B2
ij (10)

where B is as in Eq. 8. The second approach, called
SVMmar+perm, defines a statistic over the contribution of
the weight of the j-th voxel to the SVM margin as:

sj = δwj

2‖w‖
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where δ is the SVM margin. In this case, its null distribution
is approximated by a Gaussian distribution with zero mean
and variance

Var
{
sj

} = Var
{
wj

}
[∑

j ′ Var
{
wj ′

}]2
(11)

Thus, the test SVM+perm (or SVMmar+perm) will claim
that a variable is relevant with a confidence level of α, if the
probability that a Gaussian distribution, with mean (9) and
variance (10) (or zero mean and variance (11)), generates
the value wj (or sj ) in the interval [α

2 , 1 − α
2 ]. For the

experiments we will set the confidence level α to 0.05.

T-test and Gaussian Naive Bayes (T-test+NGB)

Although the central part of the discussion is focused on
the advantages of SCB over the SVM+perm methodology
of the previous sub-section, we demonstrate the advantages
of SCB over a typical univariate filter-based variable
selection/importance. The most widely used massively
univariate approach to variable importance is to apply the t-
test to each variable separately. Once these tests are applied,
the selection of the variables that will be used during the
classification can be performed by determining a suitable
α-threshold on the outcome of the tests, and selecting as
important variables those that exceed the corresponding
threshold. We use the Gaussian Naive Bayes classifier (John
and Langley 1995) as the classifier that consumes the
variables selected with the t-test filters. As with the other
approaches, we set the α-threshold to 0.05, two-sided.

Results

Synthetic data

Table 1 lists the results achieved on the synthetic data. We
evaluated:

– the classification accuracy (ACC) computed using a
separate and large test sample;

– the sensitivity (SEN) of the variable selection defined
as the ratio between the number of correctly selected
important variables and the number of important
variables;

– the specificity (SPE) of the variable selection defined
as the ratio between the number of correctly identified
noisy variables and the number of noisy variables;

– the mean absolute error (MAE) defined as:

MAE =
∑

j∈I
ρ̂j /|I| +

∑

j∈N
(1 − ρ̂j )/|N |, (12)

where ρ̂j is the estimated p-value for the variable j to
be important (the lower the p-value the more important
the variable), and I, N are the sets of the important and
noise variables, respectively. For the SCB methods, ρ̂j

values were computed based on Eq. 6.

ACC, SEN, SPE measures depend on a categorization of
variables into important ones and noise. The categorization,
since all the studied methods provide p-values for the
variable importance, was determined by a (two-sided) α-
threshold of 0.05.

Table 1 shows that the accuracies of SCB methods and
SVMmar+perm were better than those of the other methods.
Indeed, a hypothesis test comparing the accuracies of the
methods (t-test, not to be confused with the hypothesis
tests about variable importance) over the 10 different
training sets indicated a p-value < 0.001 in every case.
The MAEs achieved by the SCB methods compared
very favorably to all baseline approaches (the statistical
significance evaluated with t-tests in the 10 data partitions
provided a p-value < 0.05). Notice that the MAE is
independent of the thresholds used to categorize variables
as important or not. The specificity (or 1 - SPE) values
of the methods are interesting as they can be compared to
the nominal α-threshold of 0.05; SCB without conformal
analysis was too lenient compared to the nominal threshold
while the SCBconf well attained the nominal threshold.
SVM+perm was overly conservative while the t-test filter
and SVMmar+perm attained well the nominal level.
The examples in Fig. 1 visualize the same conclusions.
Interestingly, as visible in Fig. 1, there was a tendency for
all methods to give a high importance to the same variables.
This was as expected with a relatively simple simulation.

ADNI

With ADNI data, we performed a split-half resampling (2-
fold cross-validation) type analysis akin to Tohka et al.
(2016). This analysis informs us, in addition to the average
performance of the methods, about the variability of
variable importances due to different subject samples in the
same classification problem.

The quantitative results are listed in Table 2. We recorded
the test accuracy (ACC) of each algorithm (the fraction of
the correctly classified subjects in the test half) averaged
across L = 100 re-sampling iterations. Moreover, we
computed the average absolute difference in ACC between
the two split-halves, i.e.,

�ACC = 1

L

L∑

i=1

|ACC(Ai, Bi) − ACC(Bi, Ai)| , (13)

where ACC(Ai, Bi) means accuracy when the training set
is Ai and the test set is Bi . SCBconf and SCB performed
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Table 1 Quantitative results with synthetic data

Method ACC SEN SPE MAE

SCB 0.916 ± 0.004 0.369 ± 0.013 0.889 ± 0.002 0.392 ± 0.004

SCBconf 0.879 ± 0.008 0.208 ± 0.011 0.957 ± 0.002 0.380 ± 0.006

SVM+perm 0.797 ± 0.005 0.076 ± 0.004 0.992 ± 0.001 0.411 ± 0.004

SVMmar+perm 0.891 ± 0.007 0.233 ± 0.011 0.945 ± 0.001 0.411 ± 0.004

t-test+NGB 0.818 ± 0.010 0.259 ± 0.013 0.949 ± 0.002 0.396 ± 0.004

The values shown are averages and standard deviations over 10 different training sets. ACC is the classification accuracy evaluated using a large
test set, SEN is the sensitivity of the variable selection, SPE is the specificity of the variable selection, and MAE is the mean absolute error. See
the text for details. Variables are selected using the α-threshold of 0.05

The result of the best performing method is highlighted in bold-face

similarly in terms of the classification accuracy and �ACC.
SCB methods were significantly more accurate than t-
test+NGB (p-value < 0.05) according to a conservative
corrected repeated 2-fold CV t-test (Bouckaert and Frank
2004; Nadeau and Bengio 2003) of the classification
accuracy. However, this conservative test did not indicate
a significant difference between the accuracy of the SCB
methods and SVM+perm and SVMmar+perm. �ACC was
markedly smaller with the SCB based methods than with the
three other methods.

The average number of selected voxels (with α-threshold
of 0.05) was the smallest with SCBconf and SVM+perm.
SCB selected roughly twice as many voxels as SCBconf.
The t-test and SVMmar+perm were the most liberal

selection methods. When evaluating the standard deviations
in the numbers of selected voxels, SCB and SCBconf
were the most stable methods. Especially, the number of
voxels selected by SVM+perm and SVMmar+perm varied
considerably as demonstrated in Fig. 2. We interpret this
as a handicap of SVM+perm and SVMmar+perm as the
α-threshold was always the same and the variability was
not expected. The numbers of selected voxels were more
variable with T-test+NGB than with SCB-based methods.
According to the MAE measure, SCBconf and t-test were
the most reproducible (see Table 2).

We quantified the similarity of two voxel sets selected
on the split-halves Ai and Bi using modified Hausdorff
distance (mHD) (Dubuisson and Jain 1994). This has the

Fig. 1 Variable importance Z-scores (absolute values) on a plane cutting through Thalami and Superior Frontal Gyri with synthetic data. The
voxels in the areas surrounded by red color were important in the ground-truth and the voxels outside those areas were not
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Table 2 Quantitative results with the ADNI split-half experiment

SCBconf SCB SVM+perm SVMmar+perm T-test+NGB

ACC 0.769 0.766 0.713 0.745 0.704

�ACC 0.030 0.029 0.047 0.041 0.045

Nsel 2067 ± 255 4420 ± 420 1884 ± 2286 14686 ± 8838 10253 ± 2278

mHD 1.536 ± 0.105 1.174 ± 0.049 2.952 ± 0.843 1.648 ± 2.736 0.669 ± 0.144

mHDsta 1.536 ± 0.105 1.546 ± 0.111 2.938 ± 3.590 2.719 ± 2.774 1.707 ± 0.705

MAE 0.194 ± 0.006 0.278 ± 0.007 0.267 ± 0.064 0.445 ± 0.051 0.197 ± 0.020

The values listed are the averaged values over 100 resampling runs followed, where reasonable, by their standard deviations. mHD and mHDsta
are computed in voxels. ACC is the classification accuracy, �ACC is the variability of the ACC (13), Nsel is the number of selected voxels, mHD
is the modified Hausdorff distance (14), mHDsta is the modified Hausdorff distance when all methods are forced to select the same number of
variables, and MAE is the mean absolute error between the variable importance p-values obtained using independent training sets

The result of the best performing method is highlighted in bold-face

advantage of taking into account spatial locations of the
voxels. Let each of the voxels a be denoted by its 3-D
coordinates (ax, ay, az). Then, the mHD is defined as

H(VA, VB) = max(d(VA, VB), d(VB, VA)), (14)

where

d(VA, VB) =
∑

a∈VA

min
b∈VB

||a − b||.

Tohka et al. (2016) showed that reproducibility measures
of the voxel selection are correlated with the number of
selected voxels. To overcome this limitation and make
the comparison fair, we here studied standardized sets
of voxels by forcing each algorithm to select the same
number of voxels as SCBconf in the split half Ai . For each
algorithm, we then selected the voxels in the Bi according

Fig. 2 The difference in the numbers of selected voxels between
two independent training sets within each split-half resampling run.
The SCB methods were more stable with respect to the number of
selected voxels than the other methods. Especially, SVM+perm and
SVMmar+perm suffered from an excess variability

to the α-threshold obtained for the split-half Ai . The mHD
computed using this standardization is denoted by mHDsta
in Table 2. As shown in Table 2, the t-test filter was
the most reproducible according to the uncorrected mHD.
However, this was an artifact of the over-liberality of the
test. When standardized with the respect to the number of
selected voxels (the row mHDsta), the SCB based methods
were most reproducible; however, the difference to the t-test
filter was not statistically significant. The SVM+perm and
SVMmar+perm were significantly less reproducible than
any of the other methods.

Figure 3 shows examples of visualized variable impor-
tance maps. All methods displayed, for example, Hip-
pocampus and Amygdala as important as would be
expected. An interesting difference can be observed in
middle frontal gyrus, where there was a cluster of highly
important voxels according to the SCB methods. However,
the t-test filter did not consider these voxels as important.
Both SCB methods identified several clusters of important
voxels, with SCBconf being more conservative. SVM+perm
importance appeared to be more scattered and the t-test was
the most liberal selecting many more voxels than the other
methods.

COBRE

The classification accuracies and numbers of selected
voxels with the COBRE data are listed in Table 3.
In this experiment, SCBconf was significantly more
accurate than the other methods (p-value always < 0.01,
according to the corrected resampled t-test Bouckaert
and Frank 2004; Nadeau and Bengio 2003). The other
methods performed similarly in terms of the cross-validated
classification accuracy. This indicates that the conformal
analysis was an essential addition to SCB, probably
because the COBRE dataset can be assumed to be more
heterogeneous than the ADNI dataset. The heterogeneity
of COBRE data probably stems from multiple sources.
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Fig. 3 Variable importance Z-scores from a randomly selected
example run of the ADNI split-half experiment. The Z-scores are
thresholded at |Z| > 1.96, corresponding to two-sided alpha threshold
of 0.05. Positive Z values indicate positive weights. Axial slices at the
z-coordinate of the MNI stereotactic space of 0mm, -10mm -20mm,
and -30mm are shown

For example, schizophrenia has often been characterized
as a heterogeneous disorder (Seaton et al. 2001), the
subjects suffering from schizophrenia were receiving
various medications at the time of scanning (Kim et al.
2016), the age range of the subjects in the dataset was
large, and resting state fMRI is more prone to noise due to,
for example, subject motion than anatomical T1-weighted
MRI. It is particularly in these kinds of applications where
we expect the conformal analysis to be most useful. The
classification accuracy achieved with SCBconf appeared
to outperform recent published analyses of the same data
(Chyzhyk et al. 2015; Kim et al. 2016). However, note

that the direct comparison of the classification performance
with these works is not fair since it is subject to the
differences in variable extraction (different variables were
used), data processing (different subjects were excluded)
and evaluation (different cross-validation folds were used).

The SCBconf selected, on average, 4251 variables and
was more conservative than the plain SCB, which selected
11085. SVM+perm selected only 2433 variables on average
whereas SVMmar+perm selected 6975. The numbers of
variables selected by SVM+perm and SVMmar+perm
were less variable than in the ADNI experiment where
this variation was clearly a problem for these methods.
The t-test was overly liberal. Interestingly, the t-test
selected many more variables corresponding to the negative
correlation strength (on average 24283) than to the positive
correlation strength (on average 2474). Instead, SCB and
SVM+perm methods selected similar numbers of variables
corresponding to the positive and negative correlation
strength. This is also visible in Fig. 4, where the median
magnitudes of the variable importances are visualized
(medians of absolute value of z-scores, see Eq. 6, over
10 CV runs). Concentrating on the SCBconf, widely
distributed and partially overlapping areas were found to
be important for both negative and positive correlation
strength. Particularly, the most important variables (with
medians of absolute z-scores exceeding 15 or equivalent p-
values smaller than 10−51) were found in left cerebellum,
left inferior temporal gyrus, left and right thalamus,
left inferior parietal gyrus, right inferior frontal gyrus,
left medial frontal gyrus, and left middle frontal gyrus
for negative correlation strength. For positive correlation
strength, median absolute z-scores exceeding 15 were found
in left and right cerebellum, left inferior frontal gyrus,
left caudate, right lingual gyrus, right middle temporal
gyrus and left medial frontal gyrus. We note that a high z
value of 15 was selected as threshold in this discussion to
concentrate only to the most important variables. We have
made the complete maps of variable importance available
at NeuroVault service (Gorgolewski et al. 2015) at http://
neurovault.org/collections/MOYIOPDI/.

With the COBRE data, we studied the effect of multiple
comparisons correction to the classification accuracy and to
the number of selected variables. For multiple comparisons
correction, we used variable-wise false discovery rate
(FDR) correction with Benjamini-Hochberg procedure
(assuming independence) (Benjamini and Hochberg 1995).
The classification accuracies and the numbers of selected
variables, with and without FDR correction, are shown in
box-plots of Fig. 5. SVM+perm and SVMmar+perm were
excluded from this experiment as the multiple comparisons
problem is different with them (Gaonkar and Davatzikos
2013) and it was found to produce an empty set of
variables in some cases. As is shown in Fig. 5, including
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Table 3 Average accuracy and number of selected voxels with the 10-fold CV with the COBRE experiment

SCBconf SCB SVM+perm SVMmar+perm T-test+NGB

ACC 0.952 ± 0.069 0.695 ± 0.154 0.731 ± 0.136 0.692 ± 0.129 0.709 ± 0.170

Nsel 4251 ± 598 11085 ± 588 2433 ± 216 6975 ± 442 26757 ± 3397

The values after ± refer to the standard deviations over 10 CV-folds

multiple comparisons correction had no influence to the
classification performance with any of the methods.

Computation Time

The experiments were run in a computer with Intel Xeon
2.40Ghz processor with 20 cores and 128 Gb of RAM. The
training of several SVMs that took place in the bagging
stages of both SCB and SCBconf was parallelized across
all the cores of the computer. All the other computations
(the weight aggregation that leads to the final measure
of variable importance, the hypothesis testing and the
evaluation of the final SVM) were done using a single core.
The baseline methods, SVM+perm, SVMmar+perm, and
t-test+ NGB, were run using a single core.

The baseline methods SVM+perm, SVMmar+perm, and
t-test+ NGB required between 1 and 5 seconds depending
on the size of the dataset (number of samples and
dimensionality) and on the number of selected important
variables, as this last quantity determines the training time
of the final classifier. The computation time of the SCB
was in the range 5 to 6 minutes due to the bagging. The
computation time was up to 2 hours in the case of the
SCBconf, as each conformal analysis iteration involves a
complete bagging and we carried out R = 20 of these
iterations. Since bagging can be run in parallel, these times
could be substantially reduced by further parallelization.

Discussion

We have introduced and evaluated new variable importance
measures, termed SCB and SCBconf, based on sign
consistency of classifier ensembles. The measures are
specially designed for very high dimensional scenarios with
far more variables than samples such as in neuroimaging,
where many widely used multivariate variable importance
measures fail. The SCB variable importance measures
extend and generalize ideas for the voxel selection we have
introduced earlier (Parrado-Hernández et al. 2014). We have
derived a novel parametric hypothesis test that can be used
to assign a p-value to the importance of the variable for
a classification. We have shown that the variable selection
using SCB and SCBconf importance measures leads to a

more accurate classification than the variable selections
based on a standard massively univariate hypothesis testing,
or on two statistical tests based on a parametric SVM
permutation test (Gaonkar and Davatzikos 2013; Gaonkar
et al. 2015). These three methods were compared to the
SCB methods because 1) they are applicable to high-
dimensional data and 2) they come with a parametric
hypothesis test to assign p-values to variable importance.
We have also demonstrated that the proposed SCB and
SCBconf measures were robust and that they can lead
to better classification accuracies than the state of art in
schizophrenia classification based on resting state fMRI.

The basic idea behind the SCB methods is to train
several thousand linear SVMs, each with a different
subsample of data, and then study the sign-consistency of
weights assigned to each variable. These weights having
the same sign is a strong indication of the stability of
the interpretation of the variable with respect to random
subsampling of the data and, thus, a strong indication of
the importance of the variable. Therefore, we can quantify
the importance of the variable by studying the frequency of
sign of the classifier weights assigned to it. While the ideas
of random subsampling and random relabeling are widely
used for variable importance and selection, for example, in
the out-of-bag variable importances of RFs (Breiman 2001),
the idea of sign consistency is much less exploited and
novel in brain imaging. The reason to study signs of the
weights of linear SVMs rather magnitudes of those weights
is that the signs of the weights are much less sensitive to
the redundancy of the data (multicolinearity). In addition,
the signs of the weights have a simple interpretation in
terms of the classification task while the weight magnitude
is much more difficult to interpret in high dimensions. A
positive weight means that the associated variable pushes
the classifier towards the positive class while a negative
weight means that the associated variable pushes the
classifier towards negative class. The conformal variant,
SCBconf, refines SCB variable importance by utilizing test
data by assigning random labels to it. This is essentially
relabeling in the transductive setting and it is especially
useful in situations where the data is heterogeneous as
we demonstrated using the COBRE resting-state fMRI
sample. The reason why the refinement is needed is that
most variables in a brain scan contribute to separating that
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Fig. 4 Median magnitudes of variable importance Z scores among 10
CV runs with COBRE data. The Z-scores are thresholded at |Z| >

1.96. Note that if a variable lights up then it was selected during at
least half of the CV runs. ’Pos’ and ’Neg’ quantifiers refer to the
strength of the positive and negative connectedness that were separated
in the analysis. We do not visualize whether the classifier weights are
negative or positive to avoid clutter. Axial slices at the z-coordinate
of the MNI stereotactic space of 15mm, 0mm -15mm, and -30mm are
shown. Complete maps are available in the NeuroVault service http://
neurovault.org/collections/MOYIOPDI/

one brain from the other brains in the training set. Expressed
in terms of linear classification, the number of linearly
independent components among the training input variables
exceeds the number of training instances so that any set
of binary labels leads to a linearly separable problem, and
randomizing a part of the labeling helps in separating truly
important variables for the characterization of the disease

from the variables that just separate one brain from the rest.
We note that the SCB variable importances are proba-

bilistic, i.e., if the signs of the weights of classifiers from
the bagging process are consistent with a high probability,
then the associated variable is deemed as important for the
classification. The nature of the quantifier ’with a high prob-
ability’ is made exact by the associated p-value resulting
from the hypothesis test against the null hypothesis of that
the sign is inconsistent. We further note that even for the
most important variables, two subsets of training data lead-
ing to opposite signs for weight of that variable probably
exist. However, for the important variable, the signs are the
same with high probability.

We have used uncorrected p-values to threshold the
variable importance scores. There are two reasons for this.
First, the variable importance scores might be interesting
also for variables that do not pass stringent multiple
comparisons corrected threshold. Second, retaining also
variables that are borderline important could improve
the generalization performance of the classifier. With the
COBRE fMRI dataset, we have shown that ultimately this
is a matter of preference and whether using corrected
or uncorrected thresholds makes no difference to the
generalization performance of the classifier. We also
experimented this with synthetic data and observed a slight
drop in the classification performance when using the
FDR corrected thresholds. As Gaonkar and Davatzikos
(2013) noted the classifier weights of an SVM are not
independent and thus FDR based multiple comparisons
correction probably over-corrects. In a data-rich situation,
cross-validation based estimate of the generalization error
might be used to select the optimal α-threshold, however,
one should keep in mind that cross-validation based error
estimates have large variances (Dougherty et al. 2011) and
this might offset the potential gains of not setting the
importance threshold a-priori (Tohka et al. 2016; Huttunen
and Tohka 2015; Varoquaux et al. 2017).

The SCB method has two parameters: the number of
resampling iterations S and the subsampling rate γ . In our
target applications, where the number of variables is larger
than the number of samples, the parameter C for the SVMs
can always be selected to be large enough (here C = 100) to
ensure full separation. For the parameter S, the larger value
is always better and we have found that S = 10.000 has
been sufficient. We have selected the subsampling rate to
be 0.5 and previously we have found that the method is not
sensitive to this parameter; in fact, these parameter settings
agree with those previously used by Parrado-Hernández
et al. (2014). SCBconf has one extra parameter R (the
number of random labelings of the test samples). We have
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Fig. 5 The classification
accuracy and the number of
selected variables across 10 CV
folds with COBRE data with
and without FDR based multiple
comparisons correction.
Whether FDR correction is
included or not made no
difference to the classification
performance of the methods

here selected R = 20 and we do not expect gains by
increasing this value.

It is important to compare our approach to RFs
(Breiman 2001), which also use bagging to derive
variable importances from several classifiers. An important
difference is the choice of the base classifier used to
construct an ensemble. In our case, this is a linear classifier,
where each variable receives a different weight in each
classifier of the ensemble. These different weights received
by a same variable across all the classifiers in the ensemble
can be combined in a score that decides the importance of
the variable. RFs, instead, use decision trees as the base
classifiers. As we have argued in the introduction, the use
of linear classifiers is advantageous when the number of
variables is in the order of tens of thousands as the number
of trees in a forest would have to be extraordinarily large
to decide importance for each variable. We also remark that
when the number of samples is smaller than the number
of variables, the classification tasks are necessarily linearly
separable and thus solvable by linear classifiers (Duda et al.
2012). Techniques such as oblique RFs (oRFs) (Menze
et al. 2011), offer an interesting half way between RFs
based on univariate splits and linear classifiers as in each
node the decision is based on a linear classifier with a
randomly selected subset of variables (Menze et al. 2011
suggest to use subsets of the size

√
P ). In the cases where

subsets of variables used for training a classifier is larger
than the number of training subjects, each tree in an oRF
reduces to a single linear classifier because the classification
problem in the first node is already linearly separable
and thus the subsequent nodes would face data subsets
where all the instances belong to the same class. Variable
importance in oRFs depend on the choice of an additional
tuning parameter to decide if a variable is important in an
individual split or not.

Placing a p-value to variable importances in RFs has
turned out to be a difficult problem. The early proposal
by Breiman and Cutler (2007) suffers from substantial
problems identified by Strobl and Zeileis (2008). Later

proposals (Hapfelmeier and Ulm 2013; Altmann et al.
2010) rely on permutation approaches requiring training
hundreds of RFs even when the number of variables is in the
order of tens (Hapfelmeier and Ulm 2013). Consequently,
variable selection approaches using RFs rely on different
heuristics or cross-validation (Dı́az-Uriarte and De Andres
2006; Genuer et al. 2010).
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